Critical behaviour associated with helical order near a Lifshitz point

This article has been downloaded from IOPscience. Please scroll down to see the full text article.
1977 J. Phys. A: Math. Gen. 10 L249
(http://iopscience.iop.org/0305-4470/10/12/008)
View the table of contents for this issue, or go to the journal homepage for more

Download details:
IP Address: 129.252.86.83
The article was downloaded on 30/05/2010 at 13:49

Please note that terms and conditions apply.

## LETTER TO THE EDITOR

# Critical behaviour associated with helical order near a Lifshitz point 

David Mukamel<br>Department of Electronics, The Weizmann Institute of Science, Rehovot, Israel

Received 24 August 1977


#### Abstract

The wavevector $\boldsymbol{q}$ associated with the helical order varies along the paramag-netic-helical critical line as $|q| \sim|p|^{\boldsymbol{\beta}_{\mathrm{k}}}$, as a Lifshitz point ( $T=T_{\mathrm{L}}, p=0$ ) is approached. Renormalisation group techniques in $d=4+\frac{1}{2} m-\epsilon(\epsilon>0)$ dimensions are used to calculate the critical exponent $\beta_{k}$, associated with an $m$-fold Lifshitz point, to second order in $\epsilon$. For a $n$-component order parameter we find


$$
\beta_{k}=\frac{1}{2}+\frac{n+2}{(n+8)^{2}} \frac{11 m^{2}+36 m+16}{48(m+2)} \epsilon^{2}+\mathrm{O}\left(\epsilon^{3}\right) .
$$

The critical behaviour associated with a Lifshitz point has been discussed extensively in recent years (see, e.g., Hornreich et al 1975a,b, 1977, Nicoll et al 1976, 1977, Selke 1977, Villain 1977, Abrahams and Dzyaloshinskii 1977, Mukamel and Luban 1977). Two ordered phases exist in the vicinity of a Lifshitz point: a ferromagnetic phase associated with a wavevector $q=0$, and a helical phase associated with a wavevector $q \neq 0$. The two ordered phases are separated from the disordered (paramagnetic) phase by a critical line with two branches $T_{\mathrm{F}}(p)$ and $T_{\mathrm{H}}(p)$, which intersect at a Lifshitz point. It has been shown (Hornreich et al 1975a), using scaling arguments, that along the helical branch of the critical line, the wavevector $q$ associated with the helical order varies as

$$
\begin{equation*}
|\boldsymbol{q}| \sim|p|^{\beta_{k}}, \tag{1}
\end{equation*}
$$

as a Lifshitz point ( $T=T_{\mathrm{L}}, p=0$ ) is approached. Renormalisation group analysis shows that for an $m$-fold Lifshitz point, $\beta_{k}=\frac{1}{2}+\mathrm{O}\left(\epsilon^{2}\right)$ where $\epsilon=4+\frac{1}{2} m-d>0$ and $d$ is the dimensionality of the system. An $m$-fold Lifshitz point is characterised by an instability associated with the absence of quadratic terms of the form $q_{i}^{2}$ in the Landau-Ginzburg-Wilson Hamiltonian for all $i=1, \ldots, m, m \leqslant d$.

In the present letter we calculate $\beta_{k}$ for an $m$-fold Lifshitz point to second order in $\epsilon$. We first use scaling arguments to show that

$$
\begin{equation*}
\beta_{k}=\nu_{l 4} / \phi \tag{2}
\end{equation*}
$$

where $\phi$ is the crossover exponent and $\nu_{l 4}$ is one of the two correlation length exponents associated with the Lifshitz point (Hornreich et al 1975a, b). We then show that the crossover exponent $\phi$ can be written in the form $\dagger \phi=\nu_{l 4}\left(2-\eta_{14}-\lambda\right)$ where $\eta_{14}, \lambda=O\left(\epsilon^{2}\right)$. By calculating $\eta_{14}$ and $\lambda$ to $O\left(\epsilon^{2}\right)$ we obtain an expression for the exponent $\beta_{k}$.
$\dagger$ This corrects the expression given by Hornreich et al (1977).

To derive the scaling relation (2) we note that according to general scaling theory (see, e.g., Fisher 1973, Pfeuty et al 1974), the singular part of the susceptibility $\chi_{s}(t, p, q)$ takes the form

$$
\begin{equation*}
\chi_{\mathrm{s}}(t, p, q) \sim|t|^{-\gamma} X\left(\frac{p}{|t|^{\phi}}, \frac{\boldsymbol{q}_{a}}{|t|^{\nu_{4}}} \frac{\boldsymbol{q}_{\beta}}{|t|^{\nu_{12}}}\right), \tag{3}
\end{equation*}
$$

in the limit $t, p, q_{\alpha}, \boldsymbol{q}_{\beta} \rightarrow 0$. Here $t=\left(T-T_{\mathrm{L}}\right) / T_{\mathrm{L}}, \boldsymbol{q}_{\alpha}=\left(q_{1}, \ldots, q_{m}\right), \boldsymbol{q}_{\beta}=$ ( $q_{m+1}, \ldots, q_{d}$ ), and the exponents $\gamma, \nu_{l 4}, \nu_{l 2}$ and $\phi$ are those associated with the Lifshitz point. The susceptibility $\chi_{\mathrm{s}}$ diverges along the critical line $T_{\mathrm{H}}(p)$ at a wavevector $q_{\alpha} \neq 0$. The critical line $T_{\mathrm{H}}(p)$ is therefore defined by the equation $\chi\left(x_{0}, y_{0}, 0\right)=\infty$ or equivalently by the two equations $p=x_{0}|t|^{\phi}$ and $\left|\boldsymbol{q}_{\alpha}\right|=y_{0}|t|^{\nu_{14}}$. Along the paramagnetic-helical critical line one therefore has $\left|\boldsymbol{q}_{\alpha}\right| \sim \mid \boldsymbol{p}^{p^{\nu_{4} / \phi} \text {. }}$. Comparing this result with equation (1) yields the scaling relation (2). Note that if $\phi>1$, the leading term in the expression for $p(t)$ along the helical critical line is not the leading singular term $x_{0}|t|^{\phi}$ but rather a linear term $p \sim c t$. In this case $\phi$ should be replaced by 1 in the scaling relation (2). However, since $\phi=\frac{1}{2}+\mathrm{O}(\epsilon)$, the scaling relation (2) can be used for sufficiently small $\epsilon$. In the following we calculate the ratio $\nu_{l 4} / \phi$ and thus obtain the critical exponent $\beta_{k}$.

Consider the $n$-component Landau-Ginzburg-Wilson Hamiltonian

$$
\begin{equation*}
\mathscr{H}=-\frac{1}{2} \int_{q} u_{2}(q) S_{q} \cdot S_{-q}-u \int_{q_{1}}\left(S_{q_{1}} \cdot S_{q_{2}}\right)\left(S_{q_{3}} \cdot S_{q_{4}}\right) \delta\left(\sum_{q_{i}}\right), \tag{4}
\end{equation*}
$$

where $S$ is an $n$-component vector $\left(S_{1}, \ldots, S_{n}\right)$ and

$$
\begin{equation*}
u_{2}(q)=r+p q_{\alpha}^{2}+q_{\beta}^{2}+q_{\alpha}^{4} . \tag{5}
\end{equation*}
$$

The Hamiltonian (4) together with (5) exhibits an $m$-fold Lifshitz point. The renormalisation group recursion relation for $u_{2}$ in $d=4+\frac{1}{2} m-\epsilon(\epsilon>0)$ dimensions is given by (see, e.g., Wilson and Kogut 1974, Fisher 1974)

$$
\begin{align*}
u_{2}^{\prime}=a^{4-n_{14}} & {\left[u_{2}\left(\frac{1}{a} q_{\alpha}, \frac{1}{b} q_{\beta}\right)+4(n+2) u \int_{q_{1}} G\left(q_{1}\right)\right.} \\
& \left.-32(n+2) u^{2} \int_{q_{1}, q_{2}} G\left(q_{1}\right) G\left(q_{2}\right) G\left(q_{1}+q_{2}+\left(\frac{1}{a} q_{\alpha}, \frac{1}{b} q_{\beta}\right)\right)+\mathrm{O}\left(u^{3}, \epsilon^{3}\right)\right], \tag{6}
\end{align*}
$$

where

$$
\begin{equation*}
G(r, p, q) \equiv G(q)=\left(r+p q_{\alpha}^{2}+q_{B}^{2}+q_{\alpha}^{4}\right)^{-1}, \tag{7}
\end{equation*}
$$

$\boldsymbol{q}=\left(\boldsymbol{q}_{\alpha}, \boldsymbol{q}_{\beta}\right)=\left(q_{1}, \ldots, q_{m}, q_{m+1}, \ldots, q_{d}\right)$, and $a(b)$ is the rescale factor associated with the $\boldsymbol{q}_{\alpha}\left(\boldsymbol{q}_{\boldsymbol{\beta}}\right)$ subspace. The rescale factors $a$ and $b$ satisfy (Hornreich et al 1975a)

$$
\begin{equation*}
a^{4-n_{14}}=b^{2-n_{12}} \tag{8}
\end{equation*}
$$

The integrations in (6) extend over the region

$$
b^{-\left(2-\eta_{i 2}\right)}<q_{i \alpha}^{4-n_{l 4}}+q_{i \beta}^{2-n_{i 2}}<1, \quad i=1,2 .
$$

However since we are interested in the exponents to $\mathrm{O}\left(\epsilon^{2}\right)$ only, it is sufficient to integrate over the region $b^{-2}<q_{i \alpha}^{4}+q_{i \beta}^{2}<1$. Consider now the integral

$$
\begin{equation*}
I(q)=\int_{q_{1}} \int_{q_{2}} G\left(q_{1}\right) G\left(q_{2}\right) G\left(q_{1}+q_{2}+\left(\frac{1}{a} q_{\alpha}, \frac{1}{b} q_{\beta}\right)\right), \tag{9}
\end{equation*}
$$

where the propagators $G$ are taken with $r=p=0$. To calculate the exponent $\eta_{14}$ one has to find the $a^{-4} \ln a q_{\alpha}^{4}$ contribution which comes from the integral $I(q)$. Assuming $|\boldsymbol{q}|$ to be small, so that in effect $\left|\boldsymbol{q}_{1}+\left(a^{-1} \boldsymbol{q}_{\alpha}, b^{-1} \boldsymbol{q}_{\beta}\right)\right|>b^{-1}$, one can perform the $\boldsymbol{q}_{2}$ integration. Define first

$$
\begin{equation*}
x_{i}=q_{i \alpha}^{2}, \quad y_{i}=q_{i \beta} \quad i=1,2 . \tag{10}
\end{equation*}
$$

In terms of the polar coordinates $\left(z_{i}=\left(x_{i}^{2}+y_{i}^{2}\right)^{1 / 2}, \theta_{i}=\tan ^{-1}\left(y_{i} / x_{i}\right)\right) i=1,2$, one has

$$
\begin{align*}
& \int_{\boldsymbol{q}_{2}} G\left(\boldsymbol{q}_{2}\right)\left[G\left(\boldsymbol{q}_{1}+\boldsymbol{q}_{2}+\left(\frac{1}{a} \boldsymbol{q}_{\alpha}, \frac{1}{b} \boldsymbol{q}_{\beta}\right)\right)-G\left(\boldsymbol{q}_{1}+\boldsymbol{q}_{2}\right)\right] \\
& \simeq \frac{K_{m} K_{d-m}}{4} B\left(\frac{m}{4}, \frac{8-m}{4}\right)\left\{\frac{1}{b^{2}}\left(\frac{1}{z_{1}^{2}}-\frac{1}{\left(\boldsymbol{q}_{1 \alpha}+a^{-1} \boldsymbol{q}_{\alpha}\right)^{4}+\left(\boldsymbol{q}_{1 \beta}+b^{-1} \boldsymbol{q}_{\beta}\right)^{2}}\right)\right. \\
&\left.+\ln z_{1}^{2}-\ln \left[\left(\boldsymbol{q}_{1 \alpha}+\frac{1}{a} \boldsymbol{q}_{a}\right)^{4}+\left(\boldsymbol{q}_{1 \beta}+\frac{1}{b} \boldsymbol{q}_{\beta}\right)^{2}\right]\right\}, \tag{11}
\end{align*}
$$

where $B(\alpha, \beta)$ is the usual beta function. Integrating now over $q_{1}$ and keeping $a^{-4} \ln a q_{\alpha}^{4}$ terms only we find

$$
\begin{equation*}
I(q)-I(0) \sim\left(K_{m} K_{d-m}\right)^{2}\left(\frac{1}{4} B\left(\frac{m}{4}, \frac{8-m}{4}\right)\right)^{2} \frac{1}{24} \frac{m^{2}+8}{m+2} a^{-4} \ln a q_{\alpha}^{4} \tag{12}
\end{equation*}
$$

Using (Hornreich et al 1975a, Mukamel and Luban 1977)

$$
\begin{equation*}
u^{*}=\frac{1}{n+8} \frac{1}{K_{m} K_{d-m} B(m / 4,(8-m) / 4)} \epsilon^{2} \tag{13}
\end{equation*}
$$

we finally obtain

$$
\begin{equation*}
\eta_{14}=-\frac{1}{12} \frac{n+2}{(n+8)^{2}} \frac{m^{2}+8}{m+2} \epsilon^{2} . \tag{14}
\end{equation*}
$$

To calculate the crossover exponent $\phi$, one has to linearise the recursion relation for $p$ in the vicinity of the fixed point. The linearised recursion relation takes the form

$$
\begin{equation*}
(\Delta p)^{\prime}=a^{2-\eta_{1 \Delta}}\left[1-32(n+2) u^{2} A \ln a\right] \Delta p \tag{15}
\end{equation*}
$$

where $\Delta p=p-p^{*}$, and $A$ is the coefficient of the $a^{-2} \ln a q_{\alpha}^{2}$ term which comes from $\partial I(q) / \partial p$. Using the same methods we have used to calculate $I(q)$ we find

$$
\begin{equation*}
A=\left(K_{m} K_{d-m}\right)^{2}\left(\frac{1}{4} B\left(\frac{m}{4}, \frac{8-m}{4}\right)\right)^{2} \frac{m+1}{2} \tag{16}
\end{equation*}
$$

Exponentiating the recursion relation (15) we obtain

$$
\begin{equation*}
(\Delta p)^{\prime}=a^{2-\eta_{l 4}-\lambda} \Delta p \tag{17}
\end{equation*}
$$

where $\eta_{l 4}$ is given by equation (14), and

$$
\begin{equation*}
\lambda=\frac{n+2}{(n+8)^{2}}(m+1) \epsilon^{2} . \tag{18}
\end{equation*}
$$

The crossover exponent is thus given by

$$
\begin{equation*}
\phi=\nu_{l 4}\left(2-\eta_{l 4}-\lambda\right), \tag{19}
\end{equation*}
$$

and the exponent $\beta_{k}$ is given by

$$
\begin{equation*}
\beta_{k}=\frac{\nu_{l 4}}{\phi}=\left(2-\eta_{14}-\lambda\right)^{-1} . \tag{20}
\end{equation*}
$$

Using (14) and (18) we finally obtain

$$
\begin{equation*}
\beta_{k}=\frac{1}{2}+\frac{n+2}{(n+8)^{2}} \frac{11 m^{2}+36 m+16}{48(m+2)} \epsilon^{2}+\mathrm{O}\left(\epsilon^{3}\right) \tag{21}
\end{equation*}
$$

Note that because of the assumed spherical symmetry within the $\boldsymbol{q}_{\alpha}$ and $\boldsymbol{q}_{\beta}$ subspaces, one expects no helical long-range order for $m \leqslant d \leqslant m+1$ (Lubensky 1972, Mukamel and Luban 1977). Therefore, the expression (21) for $\beta_{k}$ applies only for $d>m+1$, i.e. for $m<6$. The exponent $\boldsymbol{\beta}_{\boldsymbol{k}}$ has been calculated independently by Hornreich and Bruce (1978) for the special case $m=1$.

For the cases of most practical interest, namely $m=1$ and $n=1,2$, the exponent $\beta_{k}$ is given by

$$
\begin{equation*}
\beta_{k} \simeq 0.5+0.016(4.5-d)^{2} \tag{22}
\end{equation*}
$$

and the correction to the classical result is small.
We have also calculated the critical exponent $\eta_{12}$. We find

$$
\begin{equation*}
\eta_{12}=\frac{1}{2} \frac{n+2}{(n+8)^{2}} \epsilon^{2}+\mathrm{O}\left(\epsilon^{3}\right) \tag{23}
\end{equation*}
$$

and thus, to second order in $\epsilon$, the exponent $\eta_{12}$ is independent of $m$.
I thank Professor R M Hornreich and Professor A D Bruce for most stimulating correspondence. I also thank Professor M Luban and Professor S Shtrikman for many illuminating discussions. This work was supported in part by a grant from the United States-Israel Binational Science Foundation (BSF), Jerusalem, Israel.

## References

Abrahams E and Dzyaloshinskii I E 1977 to be published
Fisher M E' 1973 Proc. 24th Nobel Symp. on Collective Properties of Physical Systems, Aspenaasgaden, Sweden eds B Lundgvist and S Lundgvist (Stockholm: Nobel Foundation)

- 1974 Rev. Mod. Phys. 46597

Hornreich R M and Bruce A D 1978 J. Phys. A: Math. Gen. 11 to be published
Hornreich R M, Luban M and Shtrikman S 1975a Phys. Rev. Lett. 351678
—— 1975b Phys. Lett. 55A 269

- 1977 Physica 86A 465

Lubensky T C 1972 Phys. Rev. Lett. 29206
Mukamel D and Luban M 1977 Phys. Rev. B to be published
Nicoll J F, Tuthill G F, Chang T S and Stanley H E 1976 Phys. Lett. 58A 1

- 1977 Physica B 86-8 618

Pfeuty P, Jasnow D and Fisher M E 1974 Phys. Rev. B 102088
Selke W 1977 Z. Phys. B 27169
Villain J 1977 Physica B 86-8 631
Wilson K and Kogut J 1974 Phys. Rep. 1275

