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LETTER TO THE EDITOR 

Critical behaviour associated with helical order near a 
Lifshitz point 

David Mukamel 
Department of Electronics, The Weizmann Institute of Science, Rehovot, Israel 

Received 24 August 1977 

Abstract. The wavevector q associated with the helical order varies along the paramag- 
netic-helical critical line as IqI - (plek,  as a Lifshitz point (T = T,, p = 0) is approached. 
Renormalisation group techniques in d = 4 + f m  - c(c > 0) dimensions are used to cal- 
culate the critical exponent Bk, associated with an m-fold Lifshitz point, to second order in 
e. For a n-component order parameter we find 

1 n + 2  l lm2+36m+16 2 + 0 ( ~ ~ ) .  
@' =T+m 48(m + 2) 

The critical behaviour associated with a Lifshitz point has been discussed extensively 
in recent years (see, e.g., Hornreich er a1 1975a,b, 1977, Nicoll et a1 1976, 1977, Selke 
1977, Villain 1977, Abrahams and Dzyaloshinskii 1977, Mukamel and Luban 1977). 
Two ordered phases exist in the vicinity of a Lifshitz point: a ferromagnetic phase 
associated with a wavevector 4 = 0, and a helical phase associated with a wavevector 
4 # 0. The two ordered phases are separated from the disordered (paramagnetic) 
phase by a critical line with two branches TF@) and THO), which intersect at a Lifshitz 
point. It has been shown (Hornreich er a1 1975a), using scaling arguments, that along 
the helical branch of the critical line, the wavevector 4 associated with the helical 
order varies as 

I41 - IPlSk, (1) 
as a Lifshitz point (T = TL, p = 0) is approached. Renormalisation group analysis 
shows that for an m-fold Lifshitz point, P k  = $+ O(E') where E = 4 +$m - d > 0 and d 
is the dimensionality of the system. An m-fold Lifshitz point is characterised by an 
instability associated with the absence of quadratic terms of the form q' in the 
Landau-Ginzburg-Wilson Hamiltonian for all i = 1, . . . , m, m s d.  

In the present letter we calculate & for an m-fold Lifshitz point to second order in 
E. We first use scaling arguments to show that 

p k  = v14/4, (2) 

where 4 is the crossover exponent and U14 is one of the two correlation length 
exponents associated with the Lifshitz point (Hornreich et a1 1975a, b). We then show 
that the crossover exponent 4 can be written in the form? 4 = q 4 ( 2  - 7714 - A )  where 
7714, A = O(c2). By calculating 7714 and A to O(E*) we obtain an expression for the 
exponent Pk. 

t This corrects the expression given by Hornreich et a1 (1977). 
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To derive the scaling relation (2) we note that according to general scaling theory 
(see, e.g., Fisher 1973, Pfeuty et a1 1974), the singular part of the susceptibility 
x.(t, p, 4) takes the form 

in the limit t, p, 401, 4@+0. Here t=(T-TL) /TL,  qa=(q l  , . . . ,  q m ) ,  q @ =  
(qm+l, . . . , q d ) ,  and the exponents y, V14, ~ 1 2  and 4 are those associated with the 
Lifshitz point. The susceptibility xs diverges along the critical line TH@) at a wave- 
vector qa ZO. The critical line TH@) is therefore defined by the equation 
x(xo ,  yo, 0)= 0;) or equivalently by the two equations p = xoltl" and 1qUl = y ~ l f l " ~ ~ .  
Along the paramagnetic-helical critical line one therefore has 1qu I - I p("i4'b. Compar- 
ing this result with equation (1) yields the scaling relation (2). Note that if 4 > 1, the 
leading term in the expression for p(r )  along the helical critical line is not the leading 
singular term xolt)" but rather a linear term p - cf. In this case 4 should be replaced 
by 1 in the scaling relation ( 2 ) .  However, since 4 = $+ O(E),  the scaling relation ( 2 )  
can be used for sufficiently small E .  In the following we calculate the ratio zq4/4 and 
thus obtain the critical exponent &. 

Consider the n-component Landau-Ginzburg-Wilson Hamiltonian 

where S is an n-component vector (SI, . . . , S,) and 

U 2 ( 4 ) =  r +p4:+qg + 4:. ( 5 )  

The Hamiltonian (4) together with (5) exhibits an m-fold Lifshitz point. The 
renormalisation group recursion relation for 242 in d = 4 + fm - E ( E  > 0 )  dimensions is 
given by (see, e.g., Wilson and Kogut 1974, Fisher 1974) 

where 

G(r, P, 4)' G(q) = (r +w;+qg+q:)-', (7) 
4 = (qa, 4s) = (41, . . . , qm, &+I, . . . , q d ) ,  and a(b)  is the rescale factor associated with 
the qa (4s) subspace. The rescale factors a and b satisfy (Hornreich et a1 1975a) 

(8) a 4 - v 4  = b 2-1)i2. 

The integrations in (6) extend over the region 
b -(2-"1z) < q;-"i4 + 4 I @  ?-"I2 < 1, i = 1 , 2 .  

However since we are interested in the exponents to 0 ( e 2 )  only, it is sufficient to 
integrate over the region bT2 < q;+ q& < 1. Consider now the integral 
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where the propagators G are taken with r = p = 0.  To calculate the exponent 714 one 
has to find the ab4 In a 4: contribution which comes from the integral I (q) .  Assuming 
141 to be small, so that in effect 141 + (a-'qa, b-'qB)( > 6-', one can perform the q2 
integration. Define first 

(10) 
2 

Xi = 4ia, Yi = 4ie i = 1,2. 

In terms of the polar coordinates (zi = (x?+ Y?)"~,  8i = tan-' (yi/xi)) i = 1,2, one has 

where B(cu,p) is the usual beta function. Integrating now over 41 and keeping 
a -4 In a 4; terms only we find 

Using (Hornreich et a1 1975a, Mukamel and Luban 1977) 

1 1 2 U* =- 
n + 8 K,,,Kd-,,,B(m/4, (8 - m)/4)' ' 

we finally obtain 

1 n + 2  m2+8 
12 (n+8)2 m+2 '  * 

714 = -- 

To calculate the crossover exponent 4, one has to linearise the recursion relation for p 
in the vicinity of the fixed point. The linearised recursion relation takes the form 

(15) 
where Ap = p -p* ,  and A is the coefficient of the a-2 In a 4: term which comes from 
aI(q) /ap .  Using the same methods we have used to calculate I ( q )  we find 

(Ap)' = a2-"14[ 1 - 32(n + 2)u2A In a ]  Ap, 

Exponentiating the recursion relation (15) we obtain 

AP9 (Ap)' a 2-'h-A 

where 714 is given by equation (14), and 

( +1)E2. 
n + 2  

(n +8)2 
=- 

The crossover exponent is thus given by 

4 = W4(2 - 714- 1, 
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and the exponent P k  is given by 

Using (14) and (18) we finally obtain 

E 2  + 0(€3). 1 n + 2  l lm2+36m+16 
Pk =?+m 48(m +2) 

Note that because of the assumed spherical symmetry within the 4= and qe subspaces, 
one expects no helical long-range order for m s d C m + 1 (Lubensky 1972, Mukamel 
and Luban 1977). Therefore, the expression (21) for P k  applies only for d > m + 1, 
i.e. for m C 6. The exponent P k  has been calculated independently by Hornreich and 
Bruce (1978) for the special case m = 1. 

For the cases of most practical interest, namely m = 1 and n = 1,2,  the exponent 
P k  is given by 

P k  ~ 0 . 5  +0*016(4.5-d)2, (22) 
and the correction to the classical result is small. 

We have also calculated the critical exponent 7712. We find 

1 n + 2  
2 (n + 8)' 

V I Z = - -  E + o(€ j), 

and thus, to second order in E, the exponent 7712 is independent of m. 
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